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An interesting sub-area of transition-metal cluster chemistry
is the small but growing family of molecules that, in their ground
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Cly]®* core and show that it possesseS=a 12 ground state, one
of the highest yet identified.

Treatment of [MRO,(O,CMe)(py)(Medbm)] (1) (Me,dbmH
= 4,4-dimethyldibenzoylmethane), prepared as for the dbm
analogu€, in CH.CI, with 6 equiv of MgSiCl and 2 equiv of
Me.dbmH gave a brown solution from which was isolated crude
[MnCI(Me,dbm)] (2) on addition of EtO. Redissolution in
MeCN:CHClI, (1:1) followed by standing and slight concentration
at room temperature over3 weeks gave black crystals of
[MngO4Cly(Me,dbm)]-3CH,CI; (3-3CH,Cl,), together with some
white powder. The latter was removed by filtration and washing
of the black crystals with EtOH. Compléxcan also be obtained
by dissolving purified2 in MeCN:CH,Cl, (1:1), and subsequent
treatment as above, suggesting the formatio ¢ involve a
slow hydrolysis of the mononuclear speciesNonoptimized
yields up to 14% have been obtained to date.

The structurgof 3 (Figure 1) consists of a (Mh)s octahedron
with four nonadjacent faces bridged by theO? ions and the
other four faces byis-Cl~ ions. Six-coordinate, approximately
octahedral geometry at each metal is completed by a chelating
Me,dbm group. The cluster has virtudly symmetry. As

states, have unusually large numbers of unpaired electrons.expected for high-spin, octahedral Mnthere is a JahaTeller

Molecular clusters with sping values as high as double figures
have been discovered, with the highest value to date b&hsg
16%, for one of the clusters in a sample of cocrystallized,Fe
and Feg species, but examples witls > 8 are nevertheless very
rare3* The study of such molecules has shown that the high

(JT) distortion, taking the form of an axial elongation of the two
trans Mn-Cl bonds, making them unusually long (2.618(3)
2.692(3) A). In contrast, the MnO?~ (1.876(4)>-1.899(5) A)
and Mn—O(Mexdbm) (1.903(5)-1.925(5) A) bond lengths are
as expected. As a result of (i) the long M&I~ versus short

spin value is a result of the presence of (at least some) Mn—O?~ bonds and (ii) the near trigonal planar geometry at the
ferromagnetic exchange interactions between the metal ions andlatter (sum-of-angles (soay 349) compared with marked

or spin frustration effects arising from the presence in certgin M

trigonal pyramidal geometry at the former (sea223), the

topologies of competing exchange interactions which prevent [MnsO,Cls]®" core is a near tetrahedron with a"Git each vertex,

(frustrate) the preferred spin alignments that would otherwise
normally yield low-spin species.
The study of high-spin molecules has taken on additional

a Mn at the midpoint of each edge, and & ®ridging each face.
Although many [M(us-X)g] face-capped metal octahedra are
known!? only a relative few contain two types of X group, e.g.,

importance in recent years as it has been realized that a fairly the [TigOsCl,],1* [TisTes02],*2 and [RgY,Zs—] (X=5,Y =S or

large S value is a necessary (but not sufficient) property for

molecules to exhibit the new magnetic phenomenon of single-

molecule magnetism, i.e., the ability of material composed of

Se, Z=Cl; x=6,Y =S, Z= Cl)3 cores. Only the [Ta(us-
O)4(ﬂ3'C|)4] core of [(C{)HsMe)GTieO4C|4]ll contains, like3, four
02 and 4 CfI bridges, but the structure does not approximate to

discrete, (magnetically) noninteracting molecules to be magnetizeda tetrahedron. [MfsXg] species have been unknown to date,

by an external magnetic field below a critical blocking temperature
(Tg).32%6 The importance of a higl® value in such nanoscale

although a [Mg(u3-O)a(us-Cl)4]*" unit as found in3 but at the
2Mn'", 4Mn" level is also a recognizable fragment within the

magnets has stimulated a search for new examples of species witthigher nuclearity cluster [MigO.Cli»(biphen)]*~ (biphen= 2,2-

this property. We herein report the preparation of a new
hexanuclear M# cluster with an aesthetically pleasing [MOy-
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Figure 2. Plot of reduced magnetizatioM(Nug) vs H/T for [MngOs-
Cly(Meodbm)]-0.4CHCl,, collected in the 2.0615.0 K and 0.56-50
kG ranges. The solid line is a fit of the data to the Brillouin function for
aS= 12 complex withg = 1.936.

Magnetization [M/Nu )

virtual Ty symmetry. To obtain the pairwise exchange parameters,
the uerr versusT data were fit to the expression derived for a
(Mn'")¢ octahedron using the Kambe vector coupling mettod,
the van Vleck equation, and exchange paramelgyand Jyans

The spin Hamiltonian is given in eq 1

1= 265 188 158,188,155 1 58 ¢
S5 85+ 5585188+ 88) -
2)iandS1S5 + 5,5, S (1)
(where§ is the spin of metal M#, which can be transformed

into the equivalent form in eq 2 by the §ubsti}utions§§1 +
$5 ST TS S=S1S,and § =5+ S + S, where

l . 1 \ St is the resultant spin of the complete molecule. The energies,
Figure 1. Labeled ORTEP plot and stereopair of [MCls(Mexdbm)] A= _Jcis(érz — éAZ — éBZ — écz) — Jtrans(éAz 4 éBZ +
(3). For clarity, only theipso-carbon atom of each ¢84-p-Me ring is A2 A2 A2 A2 A2 A2 A2
shown. Selected distances (A): MaMn2, 3.195(2); Mnt-Mn3, 3.207- S-S°-S"-S-S°-5-5%) 2
(2); Mn1—Mn4, 3.203(2); MntMn6, 3.193(2); Mn2-Mn3, 3.199(2); .
Mn2—Mn5, 3.210(2); Mn2-Mn6, 3.219(2); Mn3-Mn4, 3.204(2); Mn3- E(Sr), of each § are given by eq 3, where constant terms have
Mn5, 3.189(2); Mn4-Mn5, 3.205(2); Mn4Mn6, 3.199(2); Mn5-Mn6, been omitted. An excellent fit was obtained will = +8.6
3.221; Mn}EMn5, 4.526(2); Mn2-Mn4, 4.534(2); Mn3-Mn6, 4.532-
@). ES) =—didSi(Sr+1) = Si(Sa+ 1) — (S + 1) —
| | - Se(Se + D] = JyandSa(Sp + 1)+ Sy(Ss + 1) +
Variable-temperature, magnetic susceptibility data were col- Se(Sc + 1)1 3)

lected on powdere@-0.4CHCI, in the range of 2.08320 K.

Theuerlus (xmT/cm?® K mol™2) values slowly increase from 16.01 em™2, Jyans = O cnT2, andg = 1.965 with TIP held constant at
(32.04) at 320 K to a maximum of 24.27 (73.63) at 30.0 K and 1200x 1076 cn? K mol-L. TheseJ values indicate a well-isolated
then decrease to 13.69 (23.43) at 2.00 K. The maxima may bes= 12 ground state separated by 138érinom the first excited
compared with 24.99 (78.0) for&= 12 system withg = 2.00. state.

This ground-state value was confirmed by fitting of reduced  The above results establihas a new member of the family
magnetizationNI/Nug) vs H/T data collected in the 0.56€50.0 of high-spin molecules and represent the first time that a discrete
kG range and temperatures down to 2.00 K (Figure 2). The (\n'l)s octahedron has been prepared. We believe it to be a
M/Nug value saturates at 23.02, near to the value of 24 expectedprototype of a large new family of related complexes, and attempts
for S=12if g = 2.0. The various isofield lines are virtually  to prepare the Brand other analogues are currently in progress.
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